Effect of Longitudinal Variation of Multipoles in QRJ Magnets Jie Wei RHIC Project Brookhaven National Laboratory Upton, New York 11973 September 22, 1994 The recent warm measurements of RHIC QRJ (Q3) quadrupoles indicate that the magnetic multipoles a_2 and b_3 vary significantly lengthwise along the magnet body. In the case of QRJ105, the difference in a_2 between the lead-end half and non-lead-end half is about 10 units, and the difference in b_3 is about 3 units. In the case of QRJ106, the average a_2 is about 6 units. Here, we first estimate the effect of such a longitudinal variation of the multipoles harmonics, and then study the effect of the large average a_2 . We express the variation of the multipole b_n along a magnet of length L by the expression $$b_n(s) = b_{n0} + b_{n1}(s), \quad \int_0^L b_{n1}(s)ds = 0 \tag{1}$$ where b_{n0} is the average value of the multipole harmonics, and s is the distance along the magnet axis. The relative change (kick) in particle action caused by b_n can be derived to be¹ $$\frac{\Delta J_x}{J_x} = \left(\frac{10^{-4} G_0}{B_0 \rho R_0^{n-1}}\right) (2J_x)^{\frac{n-1}{2}} \int_0^L 2\beta_x^{\frac{n+1}{2}} \sin \chi_x \cos^n \chi_x b_n(s) \ ds,\tag{2}$$ where $R_0 = 0.04$ m is the reference radius, G_0 ($G_0 = 48$ T/m at storage) is the reference gradient, $B_0\rho$ ($B_0\rho = 840$ Tm at storage) is the magnetic rigidity, and χ_x is the betatron phase. Since the amplitude functions $\beta_{x,y}$ vary significantly inside the magnet, the effect of variation b_{n1} is not negligible. From Eq. 2, we define the effective multipole $\Delta b_{n,eff}$ as $$\Delta b_{n,eff} = \frac{1}{2} \left\{ \left| \frac{\int_0^L \beta_x^{\frac{n+1}{2}}(s) b_{n1}(s) ds}{\int_0^L \beta_x^{\frac{n+1}{2}}(s) ds} \right| + \left| \frac{\int_0^L \beta_y^{\frac{n+1}{2}}(s) b_{n1}(s) ds}{\int_0^L \beta_y^{\frac{n+1}{2}}(s) ds} \right| \right\}, \tag{3}$$ and similarly the effective $\Delta a_{n,eff}$. The effect (e.g. action kick and tune shifts) of the harmonic variation b_{n1} can be approximated by the effective harmonic $\Delta b_{n,eff}$ multiplied by the average amplitude function to the appropriate power (Eq. 2). Figure 1 shows the variation of the amplitude functions $\beta_{x,y}$ in the Q3 magnet in a typical IR region operating at $\beta^* = 1$ m. Using a simple model to approximate the variation of Figure 1: Amplitude function variation in the RHIC Q3 magnet at 6 o'clock outer insertion region during $\beta^* = 1$ m operation. the harmonics, $$b_{n1} = \frac{\Delta b_n}{2} \operatorname{sign}\left(\cos\frac{2\pi\lambda s}{L}\right),\tag{4}$$ where sign(x) is equal to 1 if x is positive, and is equal to -1 if x is negative, and λ is the frequency of the variation. Using Eq. 3, Table 1 shows the effective values of $a_{n,eff}$ or | n | $\lambda = 1$ | $\lambda = 2$ | $\lambda = 4$ | |---|---------------|---------------|---------------| | 1 | 0.055 | 0.037 | 0.027 | | 2 | 0.10 | 0.075 | 0.050 | | 3 | 0.16 | 0.11 | 0.080 | | 4 | 0.26 | 0.18 | 0.13 | | 5 | 0.42 | 0.28 | 0.21 | Table 1: Effective strengths of the longitudinal multipole variations (i.e., the effective $a_{n,eff}$ or $b_{n,eff}$ that correspond to one units of Δa_n or Δb_n , respectively) as functions of the variation cycle λ for various multipole harmonics n. $b_{n,eff}$ that correspond to one units of $a_{n,eff}$ or $b_{n,eff}$, respectively, i.e., the relative strength of the multipole variation. Table 1 implies that the effect of the 10 unit difference in a_2 between the lead and the non-lead halves in QRJ magnets is about the same as that of an average a_2 of about 1 unit. Similarly, the 3 unit difference in b_3 can be approximated by an average b_3 of 0.5 units. If installed in the maximum- β location of the IR region where the operating β^* is 1 meter, the magnet with average $a_2 = 6$ units (similar to QRJ106) produces a significant kick of $\Delta J_x/J_x \approx 3 \times 10^{-2}$ for a 5- σ particle at emittance 40π mm·mr, and is likely to cause problem. Therefore, measures should be taken to investigate and to correct the large a_2 multipole harmonics. Compared with the a_2 , the effect of longitudinal b_3 variation is less alarming, and is likely be solved by sorting and similar methods. ## Acknowledgements The author would like to thank S. Peggs, R. Gupta, A. Jain, and M. Harrison for many helpful discussions. ## References 1. J. Wei and S. Peggs, RHIC/AP/19 (1993).